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1. Architecture
The overall architecture of our novel view synthesis net-

work is depicted in Table 1. In this table and the corre-
sponding diagrams, conv indicates a standard convolutional
layer of the specified filter size and stride1. In our model,
these layers are followed by a batch normalization opera-
tion. upconv indicates a nearest-neighbor upsampling oper-
ation that increases the output width and height by a factor
of 2, followed by a convolution with filter size 3 × 3 and
stride 1, which produces an output of the same size2, and
a batch normalization operation. The reshape operation is
used before and after the 3D block to produce outputs that
match the specified dimensions. output is a layer in which
a 3 × 3 convolution with stride 1 is applied, followed by a
sigmoid operation that produces output in the range of 0 to
1 in each channel. The final output is an RGB image with
an additional channel for the segmentation mask.

The architecture of the unet block segments is depicted
in Fig. 1. This component uses a standard U-Net architec-
ture [4] with skip connections connecting the encoder and
decoder in each block. The encoder is made up of 3 residual
blocks [1], as depicted in Fig. 2. These blocks each reduce
the dimensions of the input by a factor of 2. The output
of these layers is concatenated with the output of the corre-
sponding upconv layers in the decoder, which increase the
scale of the input by a factor of 2. As depicted, these con-
catenated feature maps are then passed through conv blocks.
In this and subsequent diagrams, the number at the bottom
of each cell indicates the number of feature maps output by
this operation.

The architecture of the 3d block segment is depicted in
Fig. 3. This block consists of 2 convolution layers (3 × 3,
stride 1) applied before and after the spatial transformation.

1.1. 3D Reconstruction
For the results provided for the 3D reconstruction task,

we use the overall network structure described in Table 1,
except that we do not apply the first conv and final upconv
layers, which halve and double the overall output dimen-

∗This work was performed while the author was at Snap Inc.
1In the text, table and following diagrams, conv blocks use a filter size

of 3× 3 and stride 1, except when otherwise noted.
2Padding is used as necessary to maintain the output dimensions spec-

ified at each layer.

Layer Name Output Size Filter Size, Stride Notes

input image 160× 160× 3
conv 80× 80× 32 4× 4, 2
conv 40× 40× 64 7× 7, 2

unet block 40× 40× 800 See Fig. 1
reshape 40× 40× 40× 20 Reshape 2D to 3D

3d block 40× 40× 40× 20 See Fig. 3
reshape 40× 40× 800 Reshape 3D to 2D

unet block 40× 40× 20 See Fig. 1
upconv 80× 80× 32
conv 80× 80× 32 3× 3, 1

upconv 160× 160× 32
output 160× 160× 4 3× 3, 1

Table 1: The architecture of our Transformable Bottleneck Net-
work. Please consult the referenced figures for details on the indi-
vidual segments of the network.

sions, respectively. This results in a 32 × 32 × 32 feature
volume (with 20 features per cell) when the network is ap-
plied to the 64 × 64 RGB images used as input to the net-
work. This corresponds to the dimensions of the occupancy
volume used in [6] and in our evaluations.

The network branch that serves as our occupancy de-
coder (see overview figure in the paper) has the same struc-
ture as the 3d block described above. However, in this case,
the final 3D convolution layer produces only 1 feature per
cell, and no further spatial transformation is applied in the
middle of this block, as we are simply interested in obtain-
ing the occupancy status for each cell in the feature volume.
We apply a softmax operation in the depth dimension to
the features produced by the occupancy decoder. In our ex-
periments, we found that this softmax operation helped to
normalize the input to a range that worked well for our re-
construction task, reducing the influence of extreme values
in the occupancy volume.

To synthesize the 2D segmentation masks used for train-
ing, we reshape the occupancy volume into a 32×32 feature
map with 32 features per cell, then apply a 1 × 1 convolu-
tion with stride 1 to these features to produce a single scalar
feature per cell, followed by a sigmoid operation. This pro-
duces a 2D 32×32 segmentation mask with values between
0 and 1. This segmentation mask is then upsampled to the
target resolution, 64×64. This mask is then used to compute
the loss compared to the ground-truth segmentation masks
from the dataset.

During training, this branch is applied to the feature vol-
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Figure 1: The architecture of the unet block layers of our model.
The number at the bottom of each block indicates the number of
feature maps produced by the operation.

ume immediately before the spatial transformation to ob-
tain the occupancy volumes and segmentation masks corre-
sponding to each source image, and after the feature volume
aggregation and spatial transformation for the occupancy
volume and segmentation mask corresponding to the target
image.

For the 3D reconstruction evaluations, we generate tar-
get occupancy volumes aligned to the canonical view of the
object used in the meshes that are voxelized to obtain the
ground-truth occupancy volume for each object.

2. 3D Reconstruction Results
In Table 2 we provide details on the results of the 3D re-

construction experiments described in the paper (Sec. 4.3,
Fig. 5) and the comparison with those obtained by Tul-
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Figure 2: The architecture of the res block layers used in our ar-
chitecture, as seen in Fig. 1. The top row of the conv blocks indi-
cates the filter size and stride, while the number at the bottom of
each block indicates the number of feature maps produced by the
operation.

siani et al. [6]. 3 We report the Intersection-over-Union
(IoU, higher is better) between the reconstructed volume
and the ground-truth results obtained by voxelizing the
mesh rendered for the corresponding image. The top row
provides the results obtained using our method and theirs
for only one input image, from which we extract the corre-
sponding occupancy volume. The subsequent rows present
the results obtained using our method when using additional
views and averaging the corresponding bottleneck layers (as
is done when using multiple input images for novel view
synthesis) before applying the occupancy decoder.

“real” indicates that additional views of the rendered ob-

3For a fair comparison, we report numbers obtained using the pre-
trained models, datasets, and evaluation framework made available online
by the authors for this work, which were overall somewhat lower than those
reported in their paper.
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Figure 3: The 3D component of our network. The top row of the
conv blocks indicates the filter size and stride, while the number
at the bottom of each block indicates the number of feature maps
produced by the operation.

ject (chosen from the 10 renderings per object in the dataset
used for evaluation) were used to create the occupancy vol-
ume. These results thus show how our method improves its
results when the additional information provided by these
views. “synthetic” indicates that these additional views of
the object under different poses were synthesized by our
encoder-decoder framework, given the single original im-
age as input, before being passed through the encoder again
and aggregated in the bottleneck with those from the other
views. As such, the “synthetic” results still rely on only a
single “real” image as input. This allows for a fair compar-
ison between our method and [6] in these cases.

“random poses” indicates that the azimuth and eleva-
tion for the synthesized viewpoints were selected at random
from the same distributions as were used for rendering the
training and evaluation sets. “regular poses” indicates that
these additional images were synthesized at regular inter-
vals around the vertical axis. This allows the synthesized
images to complement one another by providing contextual
information that may be missing when poses are chosen at
random. Our results demonstrate that using synthesized im-
ages with regular poses outperforms not only [6] and our
method when using a single image, but even the use of real
images at random poses. The reconstruction quality gen-
erally improves somewhat as additional views are synthe-
sized, but using as little as 4 additional synthesized views,
we obtain results that are superior to those obtained us-
ing each alternative we evaluated. This indicates that the
generative power of our encoder-decoder framework can be
used to create images that improve the overall quality of the
structural information stored in the bottleneck produced by

Methods IoU

Chair Car Aero

TBN .3042 .4664 .2699
Tulsiani et al. [6] .3913 .7113 .3332

+1 view

TBN, real, random poses .3455 .5233 .3300
TBN, synthetic, random poses .3387 .5213 .3251
TBN, synthetic, regular poses .3628 .5727 .3752

+2 views

TBN, real, random poses .3650 .5479 .3582
TBN, synthetic, random poses .3532 .5433 .3474
TBN, synthetic, regular poses .3738 .6025 .4060

+3 views

TBN, real, random poses .3753 .5638 .3741
TBN, synthetic, random poses .3600 .5573 .3587
TBN, synthetic, regular poses .4312 .6785 .4490

+4 views

TBN, real, random poses .3822 .5754 .3858
TBN, synthetic, random poses .3648 .5674 .3668
TBN, synthetic, regular poses .4507 .7128 .4661

+5 views

TBN, real, random poses .3878 .5840 .3941
TBN, synthetic, random poses .3687 .5748 .3725
TBN, synthetic, regular poses .4455 .7020 .4498

+6 views

TBN, real, random poses .3918 .5913 .4004
TBN, synthetic, random poses .3714 .5814 .3768
TBN, synthetic, regular poses .4486 .7075 .4522

+7 views

TBN, real, random poses .3946 .5968 .4049
TBN, synthetic, random poses .3732 .5862 .3797
TBN, synthetic, regular poses .4546 .7070 .4530

+8 views

TBN, real, random poses .3972 .5996 .4090
TBN, synthetic, random poses .3748 .5884 .3827
TBN, synthetic, regular poses .4630 .7131 .4594

+9 views

TBN, real, random poses .3988 .6023 .4132
TBN, synthetic, random poses .3757 .5906 .3851
TBN, synthetic, regular poses .4561 .7088 .4565

Table 2: Quantitative results for 3D reconstruction using a sin-
gle input image, and with up to 9 additional views (real or syn-
thesized). We report the intersection-over-union (IoU, higher is
better) for our method and Tulsiani et al. [6], which uses a single
image as input.

the encoder, when the encoded bottlenecks for these syn-
thesized images are aggregated with that from the original
input image.

We note that we obtain substantially better quantita-
tive results on the chair and aero datasets, but obtain only
slightly better results for the car dataset. We believe that
this is due to the relatively simple and uniform structures of
the objects in the car dataset, compared to the more varied
shapes seen in the other datasets. The benefit obtained us-
ing our approach is more substantial for the latter datasets,
in which simply producing a rough estimate of an average
object’s shape would result in larger errors than it would for
the cars.



3. Training
The equation defining the total training loss is, as de-

scribed in the paper,

LT(Θ) = LR + λ1LP + λ2LS + λ3LA + λ4LM, (1)

where LR is the L1 reconstruction loss, LP is the L2 loss
in the feature space of the VGG-19 network4, LS is the
structural similarity (SSIM) index loss, LA is the adversar-
ial loss using the discriminator architecture from [7]), and
LM is the segmentation masking loss. Please see the paper
for details on each of these loss terms. We empirically de-
termined appropriate weights for the hyper-parameters con-
trolling the contribution of the different loss components:
λ1 = 5, λ2 = 10, λ3 = 0.05, and λ4 = 10.

We train the network using the Adam optimizer [2] with
a learning rate set to 0.0002, β1 = 0.9 and β2 = 0.999.
Convergence on the test set typically takes approximately 8
days for each dataset we used for our evaluations.

4. Datasets
4.1. Novel View Synthesis
4.1.1. ShapeNet Chairs and Cars

We evaluate our framework’s novel view synthesis
(NVS) capabilities using the dataset provided for the bench-
mark in [5].5 While the images were rendered at 256×256,
our NVS network architecture accepts and produces images
at a resolution of 160×160 for the 40×40×40 volumetric
bottleneck that we use for these evaluations6. We thus apply
bilinear resampling to downsample the input and upsample
the output to the resolution used during training. As this op-
eration is differentiable, losses during training are measured
with respect to the target image at its original resolution. We
also report these losses used for the benchmark at the origi-
nal target image resolution to make for a fair comparison to
the other methods that we evaluated.

The car dataset consists of 5,997 models used for train-
ing and 1,500 used for testing. Rendering 54 views per each
model 7 results in 323,838 training images and 81,000 test-
ing images. The chairs dataset consists of 558 training mod-
els and 140 testing models, resulting in 30,132 training im-
ages and 7,560 testing images.

Note that, while the training and testing images were ren-
dered at 20-degree intervals around the vertical axis, in our
supplementary video we provide examples of models ren-
dered at 10-degree intervals. This demonstrates that our

4We use the loss computed on the conv1 1, conv2 1, conv3 1, and
relu3 3 layers of the VGG-19 network.

5The official code release, with pre-trained models and datasets, can be
found at https://github.com/shaohua0116/Multiview2Novelview.

6Using a larger volumetric bottleneck results in substantially higher
memory usage and much longer training times

718 azimuth angles sampled at 20-degree intervals and 3 elevations (0,
10 and 20 degrees).

method is able to generalize to intermediate poses not seen
during training. In contrast, for their ShapeNet evaluations,
[5] uses one-hot vectors indicating the discrete azimuth and
elevation intervals at which the source images were ren-
dered, and the specified pose for the target image. It is thus
unclear how or whether their method would be able to gen-
eralize to intermediate poses not used for training.

Our NVS results for cars in the supplementary video also
demonstrate that our network is able to synthesize transpar-
ent features such as the glass in the car windows.

4.1.2. Human Action Dataset
Each subject is rendered while performing 48 animation

sequences, using rigged human models (varying in gender,
ethnicity, size, age, and clothing) and animation sequences
obtained from Renderpeople [3]. For 4 frames selected at
regular intervals in each animation sequence, the subjects
are rendered at 12 viewpoints sampled at 30-degree inter-
vals around the vertical axis. This results in 428,544 im-
ages. We use 128 subjects for training and the remaining
58 for evaluation, resulting in a total of 294,912 training
images and 133,632 testing images.

While we use 30-degree increments for training on this
dataset, in our supplementary video we provide synthesis
results in which the subject is rendered at 15-degree inter-
vals. This further demonstrates our method’s generalization
capabilities.

4.2. 3D Reconstruction
To measure our framework’s 3D reconstruction capabil-

ities and compare it to recent work, we use the dataset and
evaluation framework provided by [6]8.

The dataset consists of rendered images of
ShapeNet models from 3 object categories: chairs,
cars and aeroplanes. We use 2831/810/404 mod-
els for training/testing/validation for the aeroplane
dataset, 5247/1500/750 models for the car dataset and
4744/1356/678 models for the chair dataset. There are 10
images per each model, rendered with varying lighting
conditions and the viewpoint azimuth and elevation uni-
formly sampled at random intervals in the ranges [0, 360)
and [−20, 30], respectively.

While the images are rendered at a resolution of 224 ×
224, we bilinearly downsample them to 64 × 64 for our
network, which results in the 32×32×32 occupancy volume
that we use for evaluation. In contrast, we use images of size
160× 160 and a 40× 40× 40 feature volume for our novel
view synthesis task. These 3D reconstruction results thus
demonstrate that our network is able to extract meaningful
structure from the input images even in the case of low input
resolution and a smaller volumetric bottleneck resolution.

8The official code release, with pre-trained models and tools for gener-
ating these datasets and evaluating the reconstruction results, can be found
at https://github.com/shubhtuls/drc.

https://github.com/shaohua0116/Multiview2Novelview
https://github.com/shubhtuls/drc


5. Segmentation Supervision Ablation Study
As discussed in the paper, we supervise our networks us-

ing a segmentation loss given the ground-truth foreground
segmentation masks for each image. While this is useful
for performing 3D reconstruction, to determine how crucial
this supervision is for our approach to novel view synthe-
sis we conducted an ablation study using a reduced version
of our model. The architecture and training procedure is as
described above, except that we use input images of a reso-
lution of 128×128 and a bottleneck resolution of 323. Ran-
dom noise was used as the background for each input image.
We found that our approach worked comparably well in re-
constructing the foreground of the target evaluation images
with and without this supervision.

Using the evaluation framework described in Sec. 4.2
for the chair dataset (using 4 input images for each target
image), with segmentation supervision we achieved an av-
erage SSIM of 0.921 and an L1 loss (computed only for the
foreground pixels of the target evaluation images) of 0.189.
Without segmentation supervision, we achieved an SSIM of
0.920 and an L1 loss of 0.182. This suggests that, while use-
ful for 3D reconstruction, this loss is not strictly necessary
for novel view synthesis, as when it is omitted the network
still learns to extract the features necessary to transform the
foreground image content to the target view.

6. Creative Manipulation Implementation.
To perform spatial transformations to the encoded fea-

ture volume, we assign a 3-dimensional coordinate pi =
(x, y, z) to each cell i corresponding to its spatial position
in the volume, such that coordinate (0, 0, 0) corresponds to
the center of the bottleneck volume. During training, given
an input and output image pair {Ik, Il}, we apply a rigid
transformation corresponding to the relative pose of these
images to these coordinates to determine the spatial posi-
tion p′i in the transformed feature volume corresponding to
pi in the original feature volume. This provides us with the
flow field Fk→l used to sample the encoded feature volume
to produce the transformed feature volume that is passed to
the decoder (see Sec. 3.1).

During training, we only apply rigid transformations cor-
responding to changes in the azimuth (rotations around the
vertical axis, corresponding to the y-axis in our representa-
tion) and elevation (rotations around the horizontal x-axis)
of the viewpoint of the scene. However, in our results we
demonstrate that this training process allows for perform-
ing non-rigid transformations that enable a large variety of
plausible manipulations to the image content. Here we de-
scribe in more detail the method in which we perform these
transformations to obtain the results seen in our paper (Figs.
1, 6-7) and the supplementary video.

Vertical and Horizontal Stretching. Rather than directly
sampling from the region in the encoded volume based
on the rigid pose between the input and output views as
described, we can vary the sampling strategy to produce
stretching effects such as those seen in our results (Fig. 1,
row 4, Fig. 6, rows 1-2, and Fig. 7 in the main paper, and
in the supplementary video, 2:50-3:40, 3:58-4:14, and 5:40-
6:05).

For example, suppose that we have n regularly sampled
values corresponding to the y-positions of the cells in a slice
of the transformed feature volume. We can find the cor-
responding values (y0, ..., yn−1) to use when sampling the
encoded feature volume as follows:

yi = a+
b− a
n− 1

× i (2)

Thus we have y0 = a and yn−1 = b. By adjusting a and
b we can change the position and size of the region in the
input volume from which values are sampled, which will
alter how the transformed region is compressed or stretched
in the decoded image. We use this technique with multiple
slices with input positions that vary over time to produce the
vertically stretching chair animations in our results. (After
sampling the input volume as described, we apply a rigid
rotation to produce the novel viewpoints seen in these im-
ages.)

We can apply similar techniques to produce stretching
effects in the x- and z-dimensions. By varying the slice
parameters over time, we cause the cars seen in our supple-
mentary video to vary in length and width over the course
of the animation.

Vertical Twisting. We can also apply different rigid ro-
tations to separate regions of the encoded feature volume,
we can achieve the “twisting” effect seen in our results
(Fig. 6, row 3 in the main paper and in the supplemen-
tary video, 2:50-3:40). Given a user-specified point on the
vertical y-axis and a rotation value α, we apply a rigid ro-
tation around the y-axis to the feature volume of α degrees
for all cells above this point and−α degrees for all cells be-
low this point. Varying the α parameter over time produces
the twisting effect seen in the swivel chairs portrayed in our
results.

Volume Merging and Reflection. By combining the con-
tent of different regions of multiple encoded feature vol-
umes, we can decode images in which this content has been
merged in a corresponding fashion as seen in Fig. 1 of the
main paper (row 4, columns 4-6) and in the supplementary
video (4:14-4:40). In these examples, the top and bottom
halves of the feature volumes for 2 different individuals
have been combined to produce new subjects with an ap-
pearance corresponding to the upper half of the first subject
and the lower half of the second. Note that while this ap-



pears to produce an effect similar to that of merging the
upper and lower regions of the rendered images, after per-
forming this merging once for the encoded bottlenecks for
each subject, we can rigidly transform the result to produce
novel views of the subject, as seen in the supplementary
video.

Similarly, we can alter and replicate regions of a single
bottleneck to produce novel content, as seen in the slicing
and stitching examples in the main paper (Fig. 6, rows 4-
5) and in the supplementary video (3:40-3:58). For these
examples, we discard the feature volume content contained
within one half of the xy-plane, and reflect the content of
the cells in the remaining half across this plane to fill the
missing regions. As a result we can produce new shapes
in which the front of the depicted car has been replaced by
the back (Fig. 6, row 4), or vice-versa (Fig. 6, row 5). As
before, we can also apply rigid transformations to the result
to produce novel views of the image content. Interestingly,
these rendered results still plausibly produce the specified
manipulation of the encoded feature volume, though cars
with such unusual shapes were never seen during training.
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